
 

 

Quantitative Understanding in Biology 
Module I: Statistics 
Lecture V: Experimental Power and 
Design 
In previous sections, we’ve seen over and over again that confidence intervals computed by statistical 
tests will be narrower in experiments that include more samples. In this section, we will use our 
knowledge of how CIs (and, equivalently, p-values) vary with N to plan experiments of an appropriate 
size. 

Before we begin, it is important to recall that it is not valid to incrementally add samples to a study until 
you obtain a significant result. In other words, if you perform an experiment with a sample size of six 
and obtain a p-value of 0.07, you can’t go back to the bench and add two more samples so you can 
rerun your statistics with N=8. Since this probably isn’t an argument you want to get into with your PI, it 
is a really good idea to carefully consider experimental design and sample size up front. 

In this section, we’ll define the precision of a CI as its half-width. In the case of a symmetric CI, the CI is 
written as 

CI: 𝑥̅𝑥 ± 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Other texts may define precision differently, so if you look at other sources or use a computer program 
to run these calculations, make sure you know how this term is defined and correct accordingly. Some of 
the literature reasons in terms of “effect size”. This is usually denoted with the symbol ‘d’, and is defined 
by the relation… 

𝑑𝑑 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑆𝑆𝑆𝑆
 

You can think of the effect size as a normalized precision. Recall that the SD and the precision have the 
same units of measure as the quantity being measured, so d is a dimensionless quantity. 

Statistical power calculations only give you estimates of the sample size that will allow you (with some 
likelihood)  to conclusively observe a desired effect size or one that is larger. Furthermore, when you use 
these methods, you’ll need to estimate quantities like the standard deviation (SD) of the quantities that 
you’ll measure. The bottom line is that most of what is presented in this section is approximate, so (1) 
we’ll feel free to use approximations in our formulae, and (2) it is a good idea to be conservative when 
we provide our estimates. 
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To perform power calculations using R, you’ll want to install the pwr package. Installing a package can 
be done via the GUI on Mac and Windows implementations of R, or at the command line… 

> install.packages(c('pwr')) 

You only need to do this once to install the package on your computer. In each R session where you 
want to use functions from this package, you’ll need to load the library with the command:  

> library(pwr) 

Single Mean 
From our previous lectures, we already know enough to estimate sample sizes for some special cases. 
Recall that the 95% CI for a univariate distribution with large N is given by… 

95% 𝐶𝐶𝐶𝐶: 𝑥̅𝑥 ± 1.96 𝑆𝑆𝑆𝑆𝑆𝑆 

95% 𝐶𝐶𝐶𝐶: 𝑥̅𝑥 ± 1.96
𝑆𝑆𝑆𝑆
√𝑁𝑁

 

If we rearrange and take 1.96 ≅ 2, then we can write… 

𝑁𝑁 ≅ 4 �
𝑆𝑆𝑆𝑆

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�

2
 

This is a useful rule of thumb to have at your disposal for estimating how many measurements need to 
be taken to estimate the true mean to a desired precision. 

Note that in order to use this formula, you’ll need to estimate the SD of a population that you haven’t 
taken samples from yet. You can usually get a rough idea of what this quantity will be by looking at 
previously obtained data. If you’re not sure, be conservative and choose something on the high-side of 
what you’d expect. 

Realize that the formula above only applies when N is sufficiently large to make the approximation that 
𝑡𝑡∗ ≅ 2. So if you get N=4 from the above formula, you should appreciate that you are likely to be 
underestimating N significantly. 

This line of reasoning can be generalized by recalling that… 

(1 − 𝛼𝛼)𝐶𝐶𝐶𝐶: 𝑥̅𝑥 ± 𝑡𝑡∗ ∙ 𝑆𝑆𝑆𝑆𝑆𝑆 

…which implies… 

𝑁𝑁 ≅ �𝑡𝑡∗ ∙
𝑆𝑆𝑆𝑆

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�

2
 

Of course, t* is a function of N (and α), so this equation would have to be solved iteratively. These sorts 
of calculations can be performed in R. We will show some examples in the next section. 
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The above equations do not guarantee that if you perform N measurements, you’ll obtain a CI with the 
desired half-width. In fact, if all of the assumptions in the analysis hold, you’ll have a 50% chance of 
obtaining such a CI or narrower. Put another way, your power to obtain the desired precision will be 
0.5. The power of an experiment is an important quantity, and it is helpful to have an estimate of the 
power of an experiment before you perform it. Formally, the power of an experiment is 1.0 – the 
probability of a type II error (assuming an effect of the specified size is present). Informally, power is the 
chance that you’ll be able to measure an effect of a given size. 

Finally, keep in mind that you may need to attempt to measure more samples than you need according 
to the formula above to account for experimental problems; this may be especially important in human 
subjects research where you may need to specify in advance how many patients you plan to recruit into 
your study, and some may later drop out or be excluded. Looking at the attrition rate of similar studies 
may be helpful. 

Difference Between Two Means 
If you want to be able to determine the difference between the means of two groups of measurements 
to a certain desirable precision, the rule of thumb is… 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒ℎ  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ~8 �
𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒ℎ  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�

2

 

Note that there is an assumption that the SDs of the measurements from both groups are roughly the 
same. As before, the sample size given by this formula will give you a 50% change of realizing your 
desired precision. You’ll need significantly more samples than the required number of samples for a 95% 
chance of hitting your target. 

Example: In a series of knockdown experiments on MDCK cells, it was desired to confirm that 
preparations of the knockdown prevent to formation of functional tight junctions. This is assessed by 
measuring (among other things) transepithelial resistance (TER). Inspection of previous studies shows 
that the mean value of TER for wild-type cells that are known to form TJs is about 130 Ω·cm2, and the 
standard deviation of TER measurements is about 30 Ω·cm2.  In this experiment, we are only interested 
in whether tight junctions form, not on the specific effects that a knockdown has on TER (perhaps via 
the regulation of TJs). We might say that variations of up to 35% in TER would still be indicative of TJ 
formation. The required precision for this experiment in therefore not particularly high: we just want a 
CI with a precision of roughly ±45 Ω·cm2.  

According to our rule of thumb, we’ll need… 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒ℎ  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ~8�
30 Ω · cm2

45 Ω · cm2�
2

= 3.5 

This tells us that we’ll need at least four samples per group. However, since the resultant N is small, we 
suspect this is a significant underestimation. So we’ll turn to R’s pwr package to help us do a better job. 
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Working in R requires that we pose our question in terms of effect size instead of precision. In this case 
d = 45/30 = 1.5. 

> pwr.t.test(d = 45/30, power = 0.5, sig.level=0.05, 
type="two.sample", alternative="two.sided") 
 
     Two-sample t test power calculation  
 
              n = 4.566802 
              d = 1.5 
      sig.level = 0.05 
          power = 0.5 
    alternative = two.sided 
 
 NOTE: n is number in *each* group 
 

R is telling us that we need 5 samples per group. Note that a two-sample, two-sided t-test with a 
significance level is 0.05 is the default, so these parameters don’t need to be explicitly specified. 

This computation is analogous to the rule of thumb, and tells us that if we use five samples, we’ll have a 
50/50 chance of obtaining a 95% CI with a precision equal to or better than our desired precision. If we 
want to have an 80% chance, we’ll need nine samples per group, and for a 95% assurance that our CI 
will be as narrow as we want, we’d need 13 samples per group. 

> pwr.t.test(d = 45/30, power = 0.8) 
 
     Two-sample t test power calculation  
 
              n = 8.060295 
              d = 1.5 
      sig.level = 0.05 
          power = 0.8 
    alternative = two.sided 
 
 NOTE: n is number in *each* group 
 
> pwr.t.test(d = 45/30, power = 0.95) 
 
     Two-sample t test power calculation  
 
              n = 12.59872 
              d = 1.5 
      sig.level = 0.05 
          power = 0.95 
    alternative = two.sided 
 
 NOTE: n is number in *each* group 
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In the above example, we were only hoping to detect relatively large effect sizes. If our experiment was 
looking not simply to determine if tight junctions were being formed, but rather to quantify potentially 
subtle effects of preparation methodology on TER, then we might say that we want to be able to resolve 
10% changes in mean TER. Our precision would then be 13 Ω·cm2, and our effect size would be 13/30 = 
0.43. Our rule of thumb then tells us N = 8*(30/13)^2 = 42.6, so we estimate that we’d need 43 samples 
in each group to have a 50/50 chance of obtaining such a narrow CI. 

A more precise calculation in R… 

> pwr.t.test(d = 13/30, power = 0.5) 
 
     Two-sample t test power calculation  
 
              n = 41.88943 
              d = 0.4333333 
      sig.level = 0.05 
          power = 0.5 
    alternative = two.sided 
 
 NOTE: n is number in *each* group 
 
> pwr.t.test(d = 13/30, power = 0.95) 
 
     Two-sample t test power calculation  
 
              n = 139.373 
              d = 0.4333333 
      sig.level = 0.05 
          power = 0.95 
    alternative = two.sided 
 
 NOTE: n is number in *each* group 
 

…indicates that we need 140 samples in each group for a 95% assurance. That’s 280 samples in all, and 
assuming that you allow for some experimental problems, you likely need to plan for 300 or so 
preparations. 

Practical Experimental Planning with Power Calculations 
If you thought that the above computed samples sizes were surprisingly high, you are not alone. Often 
when studies are planned (an all too rare event in the first place), the first power calculations along 
these lines can be quite depressing. Although we can use power calculations as above to compute a 
required N, budget, time and other constraints often put an upper bound on N. What is usually needed 
in practice is a more holistic view of the interplay and tradeoffs among power, effect size, and N that will 
aid in the selection of a pragmatic experimental plan. Preparation of plots can be very helpful in this 
regard. 
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The pwr.t.test function in R and its analogs for other tests are convenient in that they can compute any 
unknown given the other three. So if we want to know what effect size we can reasonably (power = 
80%) expect to measure in a given experiment, with a total of 50 samples (25 in each group), we can 
compute … 

> pwr.t.test(power = 0.8, n=25) 
 
     Two-sample t test power calculation  
 
              n = 25 
              d = 0.808712 
      sig.level = 0.05 
          power = 0.8 
    alternative = two.sided 
 
 NOTE: n is number in *each* group 
 

So in our example above, we could reasonably expect 95% CIs with precision 24 Ω·cm2. Remember that 
the significance level defaults to 0.05, so if you want R to compute the significance level you must 
explicitly override the default value with the specification: sig.level = NULL.  

We can plot effect sizes as a function of sample size… 

> sample.sizes <- seq(5,500,5) 
> effect.sizes <- array(numeric(), length(sample.sizes)) 
> for (i in 1:length(sample.sizes)) { 
+   effect.sizes[i] = pwr.t.test(n = sample.sizes[i], power = 0.5)$d 
+ } 
> plot(sample.sizes, effect.sizes, type="l") 
 

…and we can add a second line for a different level of power. 

> for (i in 1:length(sample.sizes)) { 
+   effect.sizes[i] = pwr.t.test(n = sample.sizes[i], power = 0.6)$d 
+ } 
> lines(sample.sizes, effect.sizes, col='red') 
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Comparing a complete plot is not all that much harder if we use some loops. There is more here than we 
are likely to type correctly all at once, so we’ll write this as a function that can be fix()ed. 

power.plot.1 <- function() { 
  sample.sizes <- seq(5,500,10) 
  powers = c(0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99) 
  effect.sizes <- array(numeric(), c(length(sample.sizes), length(powers))) 
  for (i in 1:length(sample.sizes)) { 
    for (j in 1:length(powers)) { 
      effect.sizes[i,j] = pwr.t.test(n = sample.sizes[i], power = powers[j])$d 
    } 
  } 
  xrange <- c(floor(min(sample.sizes)), ceiling(max(sample.sizes))) 
  yrange <- c(floor(min(effect.sizes)), ceiling(max(effect.sizes))) 
  plot(xrange, yrange, xlab='Sample Size', ylab='Effect Size', type="n") 
  for (j in 1:length(powers)) { 
    lines(sample.sizes, effect.sizes[,j], col=j, lwd=2) 
  } 
  legend('topright', title='Power', as.character(powers), lwd=3, col=1:j) 
} 

An alternative view can be obtained by plotting curves of power as a function of sample size for 
different effect sizes. Here we will also convert dimensionless effect sizes to precisions that are 
expressed in the units of measure for our TER example. 

power.plot.2 <- function() { 
  sample.sizes <- c(3:15,seq(20,50,5)) 
  effect.sizes <- seq(0.6, 1.6, 0.2) 
  precisions <- effect.sizes * 35 
  powers <- array(numeric(), c(length(sample.sizes), length(effect.sizes))) 
  for (i in 1:length(sample.sizes)) { 
    for (j in 1:length(effect.sizes)) { 
      powers[i,j] = pwr.t.test(n = sample.sizes[i], d = effect.sizes[j])$power 
    } 
  } 
  xrange <- c(floor(min(sample.sizes)), ceiling(max(sample.sizes))) 
  yrange <- c(0,1) 
  plot(xrange, yrange, xlab='Sample Size (each group)', ylab='Power', type="n") 
  for (j in 1:length(effect.sizes)) { 
    lines(sample.sizes, powers[,j], col=j, lwd=3) 
  } 
  legend('bottomright', title='Precision',  
   paste(as.character(precisions)," ohm*cm^2"), lwd=3, col=1:j) 
} 
 

Plots like these typically are the most useful for planning experiments. All curves will have the same 
basic sigmoidal shapes because there is always zero power as the sample size approaches zero, and 
power can be made arbitrarily high by increasing sample size to something very large. 

If your power is very low, you may be better off not doing the experiment at all (this is always an 
option). Similarly, if your experimental plan puts you on the upper flat part of these curves, you might 
consider reducing your sample size a bit. 

To review: In reality, the decision to include a certain number of samples in an experiment is driven not 
by a single power calculation, but by understanding the tradeoffs among power, sample size, and 
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precision. The precision you need (or want) is something that should be guided by your scientific 
judgment and understanding of the underlying biology of your system. 

All of the results hinge on having a reasonable estimate of the variation of your data (this appears as the 
SD in these analyses). Recall that in many biological studies variation can come from both measurement 
error and biological diversity. You can do something about measurement error by being more careful at 
the bench, or by switching to more precise methods, but realize that a good deal of intrinsic biological 
variation is typically unavoidable. 

Non-Equal sample sizes 
As mentioned above, the decision to include a certain number of samples in an experiment is usually 
driven in part by budget and time constraints. In some cases, the constraints on sample size may be hard 
limits if you only have access to a fixed number of consenting patients with a rare disease or a limited 
number of surgical tissue specimens. In these examples, the hard constraint is imposed on the number 
of samples in one group only. You can still gain some statistical power by increasing the number of 
samples in the other group (typically the control group), but there are limits to this. 

You’ll always need the fewest total samples when sample sizes are equal, but you can use unequal 
sample sizes if you need to. For example, R shows us that we need roughly 64 samples in each group to 
have an 80% chance of measuring an effect that is half the size of the SD of the data we are collecting. 

> pwr.t.test(power=0.80, d=0.5)$n 
[1] 63.76561 

If we have access to only 48 experimental samples, we can compute how many control samples we 
would need to achieve the same goals… 

> pwr.t2n.test(n1=48, power=0.80, d=0.5)$n2 
[1] 94.48826 

There are limits to how far you can go. For example, if you only have access to 30 experimental samples, 
you simply cannot measure an effect of this size with a power of 80%. 

> pwr.t2n.test(n1=30, power=0.80, d=0.5)$n2 
Error in uniroot(function(n2) eval(p.body) - power, c(2 + 1e-10, 1e+07)) :  
  f() values at end points not of opposite sign 

As above, plots can be prepared to gain insight into the tradeoffs that are at work under these 
circumstances. 

Experimental Design by Simulation 
In this lecture, we’ve focused on one specific example where a two-sample t-test is applicable. The pwr 
package in R has a number of other tests for other scenarios (comparing proportions, dealing with 
contingency tables, etc.). The same principles apply, and you should be able to use these tests to 
prepare plots if you need to. 
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Another approach is to use simulation to compute power. Here is a function analogous to pwr.t.test that 
computes power by repeatedly performing numerical experiments: 

pwr.t.test.sim <- function(d=1, n=100, sig.level=0.05, trial.count=10000) { 
 
  trials <- 1:trial.count 
  p.values <- array(numeric(), length(trials)) 
 
  for (i in trials) { 
 
    x <- rnorm(n) 
    y <- rnorm(n, mean=d) 
 
    p.values[i] <- t.test(x, y)$p.value 
 
  } 
  hist(p.values, breaks=seq(0, 1, sig.level)) 
  power <- length(p.values[p.values <= sig.level])/trial.count 
  return(power) 
} 

We can demonstrate that this works by performing the same computation using standard statistical 
methods, and by simulation. 

> pwr.t.test(n=50, d=0.5) 
 
     Two-sample t test power calculation  
 
              n = 50 
              d = 0.5 
      sig.level = 0.05 
          power = 0.6968934 
    alternative = two.sided 
 
 NOTE: n is number in *each* group  
 
> pwr.t.test.sim(n=50, d=0.5) 
[1] 0.6931 
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Don’t underestimate the utility of simulation. We often need to turn to simulation to answer real-world 
questions for which analytical statistical methods are difficult to find and apply properly, or for which 
they don’t exist at all. For example, all of the two sample t-tests that we’ve performed in this section 
assume that the SD is the same for both groups. If we have reason to believe that this is not the case, we 
could easily modify our simulation to probe how the power of our experiment would be affected… 

pwr.t2sd.test.sim <- function(n=100, 
         mean1 = 0, sd1 = 1.0, 
         mean2 = 1, sd2 = 1.0, 
         sig.level=0.05, trial.count=10000) { 
 
  trials <- 1:trial.count 
  p.values <- array(numeric(), length(trials)) 
 
  for (i in trials) { 
 
    x <- rnorm(n, mean=mean1, sd=sd1) 
    y <- rnorm(n, mean=mean2, sd=sd2) 
 
    p.values[i] <- t.test(x, y)$p.value 
 
  } 
  hist(p.values, breaks=seq(0, 1, sig.level)) 
  power <- length(p.values[p.values <= sig.level])/trial.count 
  return(power) 
} 
 
It would not be a stretch to modify this to include differing group size, to test underlying distributions 
other than the normal distribution, etc. You would expect the basic principles of the tradeoffs among 
the effect size, sample size, and power to still hold, but quantifying complex situations without 
simulation can be challenging. 
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